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Using the Lorenz model for viscoelastic medium approximation the
melting of ultrathin lubricant film is studied by friction between atomically flat
surfaces. The fluctuations of lubricant temperature are taken into account
defined by Ornstein-Uhlenbeck process. The phase portraits are defined
corresponding to the different regions of dynamic phase diagram and
determining system’s kinetics. It is shown that the singular point, meeting the
mode of dry friction, has indefinite character of stability. The other most
probable steady-states of the system, corresponding to the stable and
metastable sliding friction, are presented by the focus-type singular points in
phase portraits. Consequently, the system can demonstrate damping
oscillations near stable steady-states. The large extension of depicting
trajectories near focuses along the axes of phase plane testifies to stability of
sliding friction. Since maximums of distribution function, separated by the
pronounced minimums of probability, correspond to the steady-state modes of
friction, the transitions between them occur after large intervals of time.
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Recently problems of sliding friction of flat solid surfaces attract a considerable
attention at presence of thin film of lubricant between them [1,2]. It is conditioned by
growth of need in low-friction elements in such high-tech components as computer
storage systems, miniature engines, and aerospace devices. It is found experimentally that
in the process of friction the liquid film becomes progressively thinner, at first its
physical properties change gradually (quantitatively), and then the changes acquire the
sharp (qualitative) character.

The boundary mode of friction is described in the proposed work realized in the
case of ultrathin lubricant films with thickness less than four diameters of molecules at
smooth surfaces or asperities, high loads, and low shear rates. It is characterized by the
following changes of static (equilibrium) and dynamic properties of lubricant - simple
unstructured Newtonian liquid [2]:

- non-fluidlike (non-Newtonian) properties: transition between liquid and solid
phases, appearance of new liquid-crystalline states, epitaxially induced long-range
ordering;
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- tribological properties: absence of flow until yield point or critical shear stress
reached, solidlike behaviour of liquid lubricant characterized by defect diffusion and
dislocation motion, shear melting, boundary lubrication.

Experiments with mica, silica, metal oxide, and surfactant monolayer surfaces,
between which organic liquids and aqueous solutions were placed, have shown that there
are transformations between the different types of dynamic phases during sliding [2].
They manifest themselves in appearance of interrupted (stick-slip) friction, which is
characterized by periodic transitions between two or more dynamic states during the
stationary sliding and is the major reason for destruction and wear of frictional elements.
Thus, molecularly thin lubricant films undergo more than one type of transition, that
results to existence of different types of stick-slip mode of motion.

In works [3] a melting of ultrathin lubricant film by friction between atomically flat
surfaces is represented as a result of self-organization of the shear stress and stain, and
the temperature. The additive noises of these quantities are introduced for building the
phase diagrams, where fluctuations intensities and frictional surfaces temperature define
the domains of sliding, stick-slip, and dry friction [4]. In Ref. [5] the conditions are found
at which the stick-slip friction regime corresponds to the intermittency mode inherent in
self-organized criticality phenomenon. The dynamic phase diagram is studied taking into
account correlated fluctuations of its temperature defined by Ornstein-Uhlenbeck process

[6].

This paper, being the prolongation of Ref. [6], is devoted to investigation of kinetic
modes of boundary friction using phase-plane method. The shear stress distribution
function is studied and phase portraits are calculated for the cases of second-order and
first-order transitions — the melting of amorphous and crystalline lubricant, respectively.
The self-similar phase kinetics of lubricant film is investigated.

In the previous works [3] on the basis of rheological description of viscoelsatic
medium the system of kinetic equations has been obtained, which define the mutually
coordinated evolution of the elastic shear components of the stress ¢ and the strain €,
and the temperature 7' in ultrathin lubricant film during friction between atomically flat
mica surfaces. Let us write these equations using the measure units

T 1/2 1/2 T 1/2
o, = [Pcmo CJ , g, :& = (Lj [PCV cTa] , T. (1)
Tr Gy Tr MNo

for variables o, €, T, respectively, where p is the mass density, ¢, is the specific heat

v
capacity, T, is the critical temperature, m, = n(T = 2TC) is the typical value of shear
viscosity M, Tp Eplzcv/ k is the time of heat conductivity, / is the scale of heat
conductivity, k£ is the heat conductivity constant, T, is the relaxation time of matter

strain, G, =1, /7,:

1,6 =-0 + g¢, (2)
1.£=-e+(T-1)o, 3)
rTT=(Te-T)—Gs+0'2+X(t). “)

Here the stress relaxation time t,, the temperature 7, of atomically flat mica
friction surfaces, and the constant g = G/G, are introduced, where G is the lubricant
shear modulus. Equation (2) is reduced to the Maxwell-type equation for viscoelastic
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matter approximation by replacement €/t, on 0g/0¢. As is known [1] the Maxwell-

type equation is widely used in the theory of boundary friction. The relaxation behaviour
of viscoelastic lubricant during the process of friction is described also by Kelvin-Voigt
equation (3) [3, 7]. It takes into account the dependence of the shear viscosity on the
dimensionless temperature 1 =, /(7 -1) [8]. Jointly, Egs. (2) and (3) represent the new

rheological model. It is worth noting that rheological properties of lubricant film are
investigated experimentally for construction of phase diagram [2]. Equation (4)
represents the heat conductivity expression, which describes the heat transfer from the
friction surfaces to the layer of lubricant, the effect of the dissipative heating of a viscous
liquid flowing under the action of the stress, and the reversible mechanic-and-caloric
effect in linear approximation. Equations (2) - (4) coincide with the synergetic Lorenz
system formally [9, 10], where the elastic shear stress acts as the order parameter, the
conjugate field is reduced to the elastic shear strain, and the temperature is the control
parameter. As is known this system can be used for description of the thermodynamic
phase and the kinetic transitions.

The purpose of this work is to study the kinetics of boundary friction, described by
the phase portraits, at introduction into Eq. (4) the stochastic source ?»(t) representing the

Ornstein-Uhlenbeck process:

(M) =0, (M) = iexp[— u) , )

o
where [ is the fluctuations intensity, t, is the time of their correlation.

In Refs. [3] a melting of ultrathin lubricant film by friction between atomically flat
mica surfaces has been represented as a result of action of spontaneously appearing
elastic field of stress shear component caused by the heating of friction surfaces above

the critical value 7, =1+ g’l. Thus, according to such approach the studied solidlike-

liquidlike transition of lubricant film occurs due to both thermodynamic and shear
melting. The initial reason for this self-organization process is the positive feedback of
T and o on ¢ [see Eq. (3)] conditioned by the temperature dependence of the shear
viscosity leading to its divergence. On the other hand, the negative feedback of ¢ and ¢
on T in Eq. (4) plays an important role since it ensures the system stability.

According to this approach the lubricant represents a strongly viscous liquid that
can behave itself similar to the solid — has a high effective viscosity and still exhibits a
yield stress [2, 7]. Its solidlike state corresponds to the elastic shear stress ¢ =0 because
Eq. (2), describing the elastic properties at steady state 6 =0, falls out of consideration.
Equation (3), containing the viscous stress, reduces to the Debye law describing the rapid

relaxation of the elastic shear strain during the microscopic time t, =a/c ~107"% s,

where a ~1 nm is the lattice constant or the intermolecular distance and ¢~10° m/s is
the sound velocity. At that the heat conductivity equation (4) takes the form of simplest
expression for temperature relaxation that does not contain the terms representing the
dissipative heating and the mechanic-and-caloric effect of a viscous liquid.

At non-zero value of o Eqgs. (2)-(4) describes the above mentioned properties
inherent in the liquidlike state of lubricant. Moreover, in accordance with Ref. [11] in the
absence of shear deformations the temperature mean-square displacement is defined by
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equality <u2> =T/Ga . The average shear displacement is found from the relationship

<u2>:c52a2 /G?. The total mean-square displacement represents the sum of these

expressions provided that the thermal fluctuations and the stress are independent. Above
implies that the transition of lubricant from solidlike to fluidlike state is induced both by
heating and under influence of stress generated by solid surfaces at friction. This agrees
with examination of solid state instability within the framework of shear and dynamic
disorder-driven melting representation in absence of thermal fluctuations. It is assumed
that the film becomes more liquidlike and the friction force decreases with the
temperature growth due to decreasing activation energy barrier to molecular hops.
Besides, the friction force decreases with increasing velocity at the contact V' =[0g/ 0t
because the latter leads to the growth of the shear stress ¢ according to the Maxwell
stress - strain ¢ relation: 0c/0t =—c/t, + Goe/ ot .

This work is devoted to study of stochastic source A(t) influence on evolution of

stress (7). In accordance with experimental data for organic lubricant [2, 4] stress

relaxation time at normal pressure is equal to IG~10’10 s. Since ultrathin lubricant film
consists of less than four molecular layers, the temperature relaxes to the value 7, during
the time satisfying to inequality t, <<t . Therefore, we will suppose that conditions
are fulfilled
Ts ®T>>Tp, (6)
at which lubricant temperature 7' follows to the change of shear components of stress o
and strain €. Then, it is possible to select a small parameter and to put ‘L'TT =0 in
Eq. (4). As a result, we obtain the expression for temperature:
T=T,-ce+c” +Alr). (7)
Let us give to the system (2), (3), (7) more simple form, reducing it to the single
equation for shear stress cs(t). For this purpose it is necessary to express ¢ and 7 via
o . Differentiating with respect to time the equation for strain €, that is obtained from
(2), we get equation for €. Substituting these expressions for €, ¢, and equality (7) in

(3), we obtain evolution equation in canonical form of equation for nonlinear stochastic
oscillator of the van der Pole generator type:

mé + y(cs)c's = f(cs)+ (I)(c)?»(t) , ®)
where coefficient of friction y, force f, amplitude of noise ¢, and parameter m are
defined by expressions

y(c)zé T, +rc(1+02)], f(cs)z G(Te —l—g"l)—cs3(g_1 —1),

T5T

(I)(c)zc,mz S & Q)
g

Let us find the distribution function of the stress . To that end we will use the method

of effective potential [6], [12] — [14]. As a result, the Fokker-Planck equation is

obtained:
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a_P:_i(D(l)p)Jri D(Z)a_P . (10)
ot 0c do 0c
It is expressed in terms of coefficients
-1
pW L)y g2 & _y00r20 (11)
Y 0o oo\ v
2
p® =¢—(£+2mj. (12)
Y AY
In the stationary case the solution of Eq. (10) leads to the distribution
P(o)=2Z"exp{- E(o)}, (13)
which is fixed by effective potential
c D(l)( x)
Elc)=- dx (14)
=L
and normalization constant
© c (1)
Z=|do exp[j D (2)(’“) dx] (15)
0 oD (x)
The stationary shear stress is found from the extremum condition of distribution (13)
D(l)(c)
m =0. (16)

According to Fig. 1 the distribution (13) has pronounced maximums whose position is
determined by the set of parameters t,, T, T;, &, {,and T,. At the small values of
friction surfaces temperature 7, a single maximum is realized at point ¢ = 0 meeting the
dry friction mode. With 7, growth two maximums appear at points c =0, and 6 #0,
the first of them corresponds to the dry friction, the second one — to the sliding. The
stick-slip friction mode is realized here characterized by transitions between the indicated
stationary regimes. With further growth of 7, the zero maximum of P(c) disappears,
and maximum at ¢ # 0 remains only, i.e. lubricant becomes liquidlike. The critical value
of temperature T, providing transition of the system to the sliding friction, is defined by
those quantities as the maximums of distribution function.

Apparently, the increase of the sheared surfaces temperature 7, transforms
lubricant to the sliding friction mode. It can be understood considering Eq. (8) that
describes the damping oscillations. Here, the surfaces temperature is included only in
expression for driving force [, which increases with growth of 7,. As is known, the
liquid can correspond to the oscillation mode with large amplitude, but solid can not. At
the increasing value of effective force in (9) the amplitude of oscillations increases, and
more long oscillation process is realized to the moment of establishment of the certain
mode of friction in the system.
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Fig. 1. The distribution function of shear stress for the second-order transition at
g=02, r,=7,=01, 7,=0,2, and /=5. The curves 1, 2, 3
correspond to the temperatures 7, = 5,16, 20, respectively

For studying the dynamics of change of friction modes it is enough to represent
distribution P(cs) by position of its maximum & . This is achieved by the use of path

integrals formalism [15], within the framework of which the extreme values & =3(z) of
initial distribution function (13) evolve in accordance with the effective distribution

I1 é,a}oc exp(—IA(é, E,I)dt) 17
where Onsager-Machlup function A, acting as the Lagrangian of Euclidean field theory,

is the subject for determination.
Equation (10) can be transformed to the form:

() 2
P _ o) pw P \p +a—(D(2)P). (18)
ot do do o’
For finding of A(&,E,t) dependence we write down the differential Langevin
equation
y , dD® 2
ds = D()+d— dt +N2D® aw(t), (19)
c

corresponding to Focker—Plank equation (18) [15]. Here, stochastic differential d W(t)
represents Winner process possessing properties of white noise:

[aw(e) =0, ((@w())=ad. (20)
The feature of stochastic equations is that differential d W(t) can not be obtained by the

simple division of Eq. (19) by V2D® | To that end it is necessary to pass from a
random process G(z) to white noise x(z) related with the initial Jacobian

-1/
dx/ds = (2D(2>) 1 . Then substitution of Eq. (19) in the Ito stochastic differential
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2
dr=E e L () Q1)
do 2 45?
taking into account (20), leads to expression
2) 2
dr=| & po LD X po g B Lp@aw). 2
ds ds da2 G

Here, the terms are neglected whose order exceeds (dW(t))z. After reverse transition

from white noise x(t) to the initial process ch(t) the equality is obtained

aw(t) s 2p"+ (D<2> )

dt 1[2D(2) 247/2D®

where the stroke stands for differentiation with respect to & . Plugging this expression

into Gaussian
1 aw(e)Y
[Tocexps—— || —=| dt+,
p{ ) ( dt j }

and comparing with (17) we arrive at Lagrangian

(23)

1 &
=150 (24)
with potential energy
N2
(21)(” + (D(Z)) j
U=- G (25)

It is substantial that such form of potential energy U does not coincide with effective
potential (14). Consequently, for further considerations it is necessary to replace the
expression U (25)on E (G) (14). In this case Eq. (24) describes the system behaviour in

accordance with distribution (13) obtained above.
The system kinetics is defined by Euler—Lagrange equation
A_ONA_R (26)
06 Ot o5 0o
Within the white noise presentation the dissipative function has the simplest form
R =x?/2 and is transformed to
2
R=_5
4D
1/2

with transition to the variable G = (21)(2)) X . Substituting in (26) the equalities (24),

(14), (27), we arrive at differential equation

o) oo

c -2
D@ p@

Its study is described below based on the phase plane method (8,8).

@7

S+ D? =9. (28)
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Let us consider the steady-states at first. Supposing in (28) =0 the equation is
obtained

pd
PR
It coincides with the extremum condition of distribution (13). The distribution
maximum corresponds to the minimum of effective potential, and the distribution
minimum — to its maximum.
Consider kinetics of the system using the phase portraits defined by equation (28).
The shear stress distribution dependences P(G) are shown in Fig. 1 for the different
modes of friction for second-order phase transition. The curves 1, 2, 3 correspond the

regions of dry (DF), stick-slip (SS), and sliding (SF) friction. The phase portraits are
presented in Fig. 2 corresponding to the curves of Fig. 1.

29)

a

\ \ \
0 0.04 0.08 0.12

Fig.2. The phase portraits corresponding to the parameters of Fig. 1:
a — DF mode corresponds to the curve 1 in Fig. 1; b — SS — curve 2 in
Fig. 1; ¢c—SF —curve 3 in Fig. 1

The region of dry friction (DF) (Fig. 2, a) is characterized by a presence of one
singular point D, which corresponds to the maximum of probability P(G) at 6 =0. This
point is non-standard and requires interpretations. It is located at the origin of
coordinates, and phase trajectories is curved around it, so that the system never comes to
the value 6 =0, i.e. this point is not stationary. Consider the system behaviour at the
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arbitrary initial condition. According to the phase trajectories the system evolves to the
zero value of stress. Thus, if in initial conditions the growth rate of stress is positive it, at
first, decreases to the zero (during this time the stress increases). And then the stress
value decreases asymptotically to the zero with the increase of its decrease rate.
Presumably, the described situation meets the mode of explosive amorphization, at which
the system transforms very rapidly in amorphous solidlike state. The circumstance that
zero stress is never achieved testifies to divergence of probability P(cs) at zero point.

This is related with infinite growth of decrease rate of stress at going of the system to
o =0. Let us assume that the system reaches the point at which decreasing rate becomes
critical. In such case the increase of stress value is expected, which is accompanied by
the change of rate sign and transition of the system in a positive phase plane region.
Further, again the decreasing of stress occurs, and the described situation repeats oneself.
Alternatively, the rate sign does not change, and only its decreasing takes place. This
moves the system on a neighbouring phase trajectory, along which it approaches to the
zero stress more quickly. As a result, in course of time the oscillation mode of dry
friction is set in the vicinity of point o =0 at the arbitrary initial conditions. At that the
oscillations amplitude is small, and Iubricant has solidlike structure.

Phase portrait of the system, characterizing the region of stick-slip friction (SS), is
shown in Fig. 2b. The three special points appear here: D, saddle N, and stable focus F.
As well as above, point D is realized at the origin of coordinates and corresponds to the
dry friction mode in the system. Saddle N meets the minimum of P(G), and is unstable

stationary point. It is worth noting that at the initial value of shear stress on the right-hand
side from point N and & =0, the sliding mode of friction is set in the system during time.
If the initial value of stress appears on left-hand side from saddle N, the dry friction is set
in similar case. Thus, point N separates two maximums of distribution function P(G).

Focus F corresponds to the non-zero maximum of stress distribution function, i.e., it
describes the liquidlike state of lubricant. The corresponding to this point damping
oscillations mean that lubricant becomes more liquidlike, and more solidlike
periodically. However, the stable sliding friction is set always. Presumably, these
oscillations are conditioned by the presence of noise.

The phase portrait corresponding to the sliding friction (SF) is shown in Fig. 2, c,
which is characterized by one non-zero maximum of distribution function P(G). It is
characterized by single singular point — the stable focus F corresponding to the stable
sliding friction. This is confirmed also by large overexpansion of phase trajectories near
it along axes of ordinates and abscissas. However, it is apparent that at the initial large
value ¢ the system does not reach the point F, and approaches asymptotically to the
zero stress value. This circumstance implies that conditions can be realized, at which the
system will be near to the regime of dry friction. As described above, at reaching the
value of critical rate, its sign changes and becomes positive. It is seen from the phase
portrait, that in such case the system will pass to the mode of stable sliding friction.

Actually, the shear modulus, introduced (in terms of the relaxation time t_) in

Eq. (2), depends on the stress value. This leads to the transition of the elastic deformation
mode to the plastic one. It takes place at characteristic value of the stress o, , which does

not exceed the value o, (in other case the plastic mode is not manifested). For
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consideration of deformational defect of the modulus we will use (o) dependence
proposed in [3], instead of t. As a result, Eq. (2) takes the form:

-1
TPGZ—G(l-i- 0 ]+g®8 (30)

l+o/a
where the relaxation time for the plastic mode 1, =n,/© is introduced (n, =1,G is
the effective viscosity, ® is the hardening factor), 6=0/G <1 is the parameter
describing the ratio of tilts for the deformation curve in the plastic and the Hookean
domains, gg = G/ 0G, and a=0c,/c, are the constants. Then, within the

framework of approximation (6) the system (30), (3), and (4), as well as above, is
reduced to equation (cf. (8)):

mG + y(c)c's = f(c)+ (I)(G))\.(I) (31)
where the coefficient of friction y, force f, amplitude of noise ¢, and parameter m
are defined by expressions

()= L{rg[l +(191—_1)2J + rp(l + 02)} , (32)

8o +o/a
-1 -1
f(G)EGTe—l—L 07 +0/a —63 L 07 +0/a -1], (33)
go |l l+0/a go |l l+0/a
T,T,
do)=c, m=-L%. (34)
go

According to the effective potential method [6], [12] — [14] we will obtain the Focker—
Plank equation (10) with coefficients DV and D@ :

-1 -1
p =Ly o L8 *olafl sl 1[0 +olall
Y go | l+o/a go\ l+o/a
! _ —1!
—IoT, —Ely—i[ w1 =0 +GTPJ}, (3%5)

e go (1+G/0L)3(x

2
p® =I%[y_l +21, ] (36)

In this case the more complex form for probability is observed and, as a result, the
phase diagrams and portraits are more complex. Here, five different modes of friction are
realized. Consider each of them separately. The P(G) dependences are shown in Fig. 3

for the different modes of friction.
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Fig. 3. The distribution function of shear stress for the first-order transition at

r,=1,=7,=01, 0'=7, a=03, gg=04, [=45. The

curves 1—35 correspond to the temperatures T, =16, 21, 23.25, 24, 26,
respectively

Curves 1 — 5 correspond to the regions of dry (DF), stick-slip (SS), stick-slip and
sliding (SS+SF), metastable and stable sliding (MSF+SF), and sliding friction (SF). The
phase portraits are presented in Fig. 4 meeting the curves of Fig. 3.

The phase portrait of dry friction region (DF) is similar to that is inherent in
continuous transformation (Fig. 2, a). It implies, that DF regions are equivalent at the
taking into account of the modulus defect and without it.

Phase portrait describing the region of stick-slip friction (SS) is similar to the
characteristic one for the SS region at continuous transformation (Fig. 2, b). Basic their
difference is that here the trajectories around focus are considerably more elongated
along both coordinates axes. It means the greater stability of sliding friction.

The most complex region (SS+SF) is represented by the phase portrait shown in
Fig. 4, a. The five singular points are realized here: D, saddles N, N', stable focuses F,
F'. As well as above, saddles correspond to the minimums of P(c) dependence. Point

D meets the solidlike state of lubricant. Stable focus F' determines the first non-zero
maximum of probability. It is apparent that the oscillations are weakly pronounced
around this point. In this mode lubricant represents the very viscous liquid, because in
such type of fluid at presence of noise the oscillations are damped strongly. Actually, the
point F' corresponds to the small values of stress, and with its decreasing the lubricant
becomes more viscous, and at ¢ =0 it is transformed into the solidlike state. Thus, using
phase portraits it is possible to give explanation to that the liquidlike state of lubricant,
but not the solidlike one, corresponds to the large values of shear stress.
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Fig. 4. The phase portraits corresponding to the parameters of Fig. 3: a — SS+SF
mode corresponds to the curve 3 in Fig. 3; b — MSF+SF — curve 4 in
Fig. 3

Focus F' meets the second non-zero maximum of P(c) function, and there are

oscillations with large amplitude around it. This implies the fluidlike state of lubricant,
and accordingly, sliding. This point is on large distance along abscissas axis from all
others ones. This mode of friction is most probable only, since points D and F,
corresponding to the dry and metastable sliding friction, have large stability and
probability of realization also. From here the conclusion follows, that the system can
undergo periodic transitions (stick-slip) between the modes corresponding to the points
D, F, and F'. Since these modes are stable and separated by the pronounced minimums
of distribution function P(o-) (by saddles), the transitions between them is necessary to

expect after large intervals of time.

The phase portrait of MSF+SF region is represented in Fig. 4b. There are three
singular points — stable focuses F, F', and saddle N. The latter is similar to the
described above saddles and meets the minimum of probability dependences on stress.
Point F corresponds to the first maximum of distribution, which describes metastable
sliding mode (MSF), and F' — to the second maximum, which defines stable sliding
(SF). There are only insignificant oscillations around the focus F, however lubricant in
this mode is less viscous liquid than in vicinity of point F' in Fig. 4a. At the origin of
coordinates the singular point is absent, and the dry friction is not realized. Focus F' is
similar to described in Fig. 4a, however, it’s "attraction" domain is more stretched along
both axes, that means the larger fluidity of lubricant and stability of this mode. Therefore
in comparison with the previous case here the arising of sliding friction is more probable
(SF).

SF region is represented by the phase portrait, which is similar to described at
continuous transformation (Fig. 2¢). Here, the one stable focus is realized F' representing
stable sliding friction (SF) characterized by oscillations in it’s vicinity. The basic
difference is that in this case oscillations take place with large amplitude, that implies
strong fluidity of lubricant and pronounced stability of such mode. However, as well as
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in all above considered situations, in course of time in lubricant the stationary shear
stress is set corresponding to the maximum of the initial distribution P(c).

In basic equations (2) — (4) the shear stress o stands in the first power. However,
in general case it’s exponent @ may be not integer, but fractional:

1,6 =-0" +ge, (37)
1.6 =-e+(T-1)o", (38)
T =(T,-T)-c"+c* +Ar) . (39)

Taking into account the additive noises of shear stress and strain, and the
temperature of lubricant film it has been shown [5], that such system describes the self-
similar mode for which the characteristic scale of shear stress is absent [16]. Such regime
is determined by the homogeneous distribution function

P(y)=y"7"P(c), y=o0,. (40)

In particular, the value 2a =1.5 corresponds to the self-organized criticality mode,

at which, unlike the phase transition, the process of self-organization does not require the
external influence (7, = 0) and occurs spontaneously [5, 17].

The study of equations (37) — (39) shows that phase portraits for similar regions
repeat above considered qualitatively. Thus, there is one substantial difference. The
fractional Lorenz system at a # 1 and / # 0 results in presence of the point D in phase
portraits, which corresponds to the solidlike state of lubricant. In addition, variation of a
leads to the complication of P(G) dependence, and as a result, to more complex form of

phase portraits. Within the limits of determined friction mode at decreasing of a the
increase of abscissas of stable focuses is observed. Consequently, the weakening of
fractional feedbacks in the Lorenz-type models result in the increase of lubricant fluidity
and reducing of friction. However, in the systems described by fractional exponent a the
dry friction is realized always. Thus, it is impossible simply to assert that such systems
more preferable to friction decrease than linear systems.

The above consideration shows that increase of temperature of frictional surfaces
T,, at presence of colored noise of lubricant temperature, can be accompanied by self-

organization of elastic and thermal fields leading to the mode of sliding friction. At
setting of the sliding friction mode in the system the damping oscillations arise in the
process of which the shear stress relaxes to the stationary value fixed by probability
distribution. The amplitude of these oscillations increases with growth of stationary
values of shear stress. It means that large shear stress o corresponds to the liquidlike
structure of lubricant. The solidlike state of lubricant is described by the singular point D
at the origin of coordinates that has complex character of stability and corresponds to
divergency of probability P(c). The oscillations near this point are absent.

For description of first-order transition the shear modulus defect is taken into
account. It is shown that the change of value of the friction surfaces temperature 7, can

transform the system from the mode of dry friction to the sliding one. At that the latter
arises at two values of shear stress. Accordingly, the three singular points appear in phase
portraits that define the stationary values of stress — non-standard point D at zero stress,
and two stable focuses at non-zero ones. The interrupted (stick-slip) mode of friction can
be realized as a result of transitions between solidlike, metastable and stable liquidlike
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lubricant states which are described by zero and non-zero singular points. Taking into
consideration the nonlinear relaxation of shear stress and fractional feedbacks in the
Lorentz system it has been shown that in phase portraits the singular point D is realized
always, which corresponds to the solidlike state of lubricant and dry friction.
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BILJIMB KOPEJISIIIN TEMIIEPATYPHA HA ®A30BY
KIHETUKY ' PAHUYHOI'O TEPTA

0. Xomenko, . JIsmenko

Cymcoruil Oeporcagnuil yHigepcumem, Kagheopa QizuuHoi eleKmpoHiKu,
6yn. Pumcwvkozo-Kopcaxosa 2, 40007, Cymu, Yxpaina
e-mail: khom@phe.sumdu.edu.ua

B pamkax mogxeni JlopeHns s B’SI3KONPYXXHOTO CEpPEIOBHINA JOCITIHKEHO
IUIABJICHHS YJIBTPATOHKOI IUIIBKM MacTWiia B TPOLEC TepTsS MiX aTOMAapHO IUIOCKUMH
noBepxHsamu. Dmykryamii TemmnepaTypH IUIIBKM MacTWIA OIHCYIOTH IIPOLECOM
OpHinrelina—YneHOeka. [loOymoBaHi (a3oBi MOpTpeTH, SKi BiANOBIAAIOTH Pi3HUM
obmactssM auHaMidHOi (ha30BOi Hiarpamu i BU3HA4YalOTh KiHETHKY cucteMH. IlokazaHo,
mo ocoOJiMBa TOYKa, sSKa BIANOBIJa€ CyXOMYy TEpTIO, Mae HEBHU3HAYCHUH XapakrTep
crifikocTi. IHIN HaHIMOBIpHINII CTaHW CHCTEMH, UOIO BiOIOBIZAIOTH CTIHKOMY i
MeTacTabiIbHOMY DPITMHHOMY TEpTIO, MpeicTaBieHi Ha (a30BUX HOPTPETaX CTIHKUMH
¢dokycamu. ToMy B cucrtemMi MOXYTh BiOyBaTHCs 3aTyXaroudi KOJMBaHHS JO CTIHKHX
craHiB. Bennke nponosxeHHs pazoBux TpaekTopiit 6115 HOKyciB y370BX ocel (a3oBoro
MopTpeTa O3HA4a€ CTIHKICTh pianHHOrO TepTs. OCKUIBKM MakCHMyMH  (QYHKIi
pO3MOIiTy, IO BiANOBIJAIOTH CTALlIOHAPHUM PEKMMaM TePTs, BIJOKpPEMJICHI OJHMH Bif
OJTHOTO BHPaXXEHHUMHU MIHIMyMaMu, MEpexoly MiX HHUMH BiOYyBalOThCS 4epe3 BEJHKI
IHTEpBAJIN Yacy.

Kniouosi cnosa: B’S3KonpyxkHE cepeloBuile, (a3oBHH MOPTPET, NepepHBYACTHH
PEKUM TEPTH.
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